The relationship between singular integrals and Lebesgue integrals

Question: Let μ be the Lebesgue measure on \mathbb{R} and let f be a continuous functions on \mathbb{R}. When restricted to $[a, b]$, it is known that $\int_{a}^{b} f(x) \mathrm{d} x=\int_{[a, b]} f \mathrm{~d} \mu$, where the left hand side is the Riemann integral and the right hand side is the Lebesgue integral. Assume that $\int_{0}^{+\infty} f \mathrm{~d} t$ exists, can we claim that $\int_{0}^{+\infty} f \mathrm{~d} t=\int_{[0,+\infty)} f \mathrm{~d} \mu$?

Answer: If we assume certain other things such as f is non-negative, or $\int_{0}^{+\infty}|f| \mathrm{d} t<\infty$, etc, yes. In general, no.

First, note that the Riemann integral $\int_{0}^{+\infty} f \mathrm{~d} t$ cannot be defined directly in the sense that the Darboux upper sum equals the Darboux lower sum (why?). Instead, this Riemann integral is defined as

$$
\int_{0}^{+\infty} f \mathrm{~d} t=\lim _{x \rightarrow+\infty} \int_{0}^{x} f \mathrm{~d} t
$$

On each $[0, x]$, by the result of Problem 2 in Homework 4, we have

$$
\int_{0}^{x} f \mathrm{~d} t=\int_{[0, x]} f \mathrm{~d} \mu
$$

Thus

$$
\begin{aligned}
\int_{0}^{+\infty} f \mathrm{~d} t & =\lim _{x \rightarrow+\infty} \int_{0}^{x} f \mathrm{~d} t \\
& =\lim _{x \rightarrow+\infty} \int_{[0, x]} f \mathrm{~d} \mu \\
& =\lim _{x \rightarrow+\infty} \int_{[0,+\infty)} \chi_{[0, x]} \cdot f \mathrm{~d} \mu
\end{aligned}
$$

Also, note that

$$
\int_{[0,+\infty)} f \mathrm{~d} \mu=\int_{[0,+\infty)} \lim _{x \rightarrow+\infty}\left[\chi_{[0, x)} \cdot f\right] \mathrm{d} \mu
$$

The original question is just equivalent to whether $\lim _{x \rightarrow+\infty} \int_{[0,+\infty)} \chi_{[0, x]} \cdot f \mathrm{~d} \mu$ equals $\int_{[0,+\infty)} \lim _{x \rightarrow+\infty}\left[\chi_{[0, x)}\right.$. $f] \mathrm{d} \mu$.

When f is positive, it is clear that $\chi_{\left[0, x_{1}\right]} \cdot f \geq \chi_{\left[0, x_{2}\right]} \cdot f$ if $x_{1} \geq x_{2}$. By Lebesgue Monotone Convergence Theorem (not a direct use of it, because we have $x \rightarrow+\infty$ along the interval $(0,+\infty)$ instead of along
a sequence. But we can still manage to let it work. Why?), it follows that

$$
\lim _{x \rightarrow+\infty} \int_{[0,+\infty)} \chi_{[0, x]} \cdot f \mathrm{~d} \mu=\int_{[0,+\infty)} \lim _{x \rightarrow+\infty}\left[\chi_{[0, x)} \cdot f\right] \mathrm{d} \mu
$$

So far, we have shown that the answer to the original problem might be yes under some extra conditions. Now, we will show that, without assuming anything more than the continuity of f and the existence of $\int_{0}^{+\infty} f \mathrm{~d} t$, the answer to the original problem might be no.

Example 1: Choose a continuous function f such that

$$
\begin{gathered}
f(0)=f(1)=f(2)=f(3)=\cdots=0 \\
\int_{0}^{1} f(t) \mathrm{d} t=\int_{2}^{3} f(t) \mathrm{d} t=\int_{4}^{5} f(t) \mathrm{d} t=\cdots=2 \\
\int_{1}^{2} f(t) \mathrm{d} t=\int_{3}^{4} f(t) \mathrm{d} t=\int_{5}^{6} f(t) \mathrm{d} t=\cdots=-1
\end{gathered}
$$

f is positive on $[0,1] \sqcup[2,3] \sqcup[4,5] \sqcup \cdots$ and is negative on $[1,2] \sqcup[3,4] \sqcup[5,6] \sqcup \cdots$.
For this f, one can check that $\int_{0}^{+\infty} f \mathrm{~d} t=+\infty$. As $\int_{[0,+\infty)} f^{+} \mathrm{d} \mu=\int_{[0,+\infty)} f^{-} \mathrm{d} \mu=+\infty$, according to the definition, the Lebesgue integration $\int_{[0,+\infty)} f \mathrm{~d} \mu$ does not exist at all.

The next example is one such that $\int_{0}^{+\infty} f d t$ exists and is finite, but $\int_{[0,+\infty)} f d \mu$ does not exist.
Example 2: According to the known facts of series, we can find positive sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$, such that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=0 \\
& \sum_{n=0}^{\infty} a_{n}=\sum_{n=0}^{\infty} b_{n}=+\infty
\end{aligned}
$$

and the series

$$
a_{0}-b_{1}+a_{1}-b_{1}+a_{2}-b_{2}+a_{3}-b_{3} \cdots
$$

converge to certain $L \in(-\infty,+\infty)$.

Similar to Example 1, we choose a continuous function f such that

$$
\begin{gathered}
f(0)=f(1)=f(2)=f(3)=\cdots=0, \\
\int_{2 n}^{2 n+1} f(t) \mathrm{d} t=a_{n} \quad \forall n \in \mathbb{N}_{\geq 0} \\
\int_{2 n+1}^{2 n+2} f(t) \mathrm{d} t=-b_{n} \quad \forall n \in \mathbb{N}_{\geq 0}
\end{gathered}
$$

f is positive on $[0,1] \sqcup[2,3] \sqcup[4,5] \sqcup \cdots$ and is negative on $[1,2] \sqcup[3,4] \sqcup[5,6] \sqcup \cdots$.
Consider

$$
F_{x}=\int_{0}^{x} f \mathrm{~d} t
$$

One can prove that $\left\{F_{x}\right\}_{x \in \mathbb{R}_{\geq 0}}$ is Cauchy in the sense that for any $\epsilon>0$, there exists $M \in \mathbb{R}_{\geq 0}$, such that for any $x, y \in(M,+\infty)$, we have $\left|F_{x}-F_{y}\right|<\epsilon$. Note that we are not talking about a Cauchy sequence here. The proof will need such requirement that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=0$. During the proof, one should also note that the partial sum corresponding to the series $a_{0}-b_{1}+a_{1}-b_{1}+a_{2}-b_{2}+a_{3}-b_{3} \cdots$ is a Cauchy sequence. That proof is left as an exercise.

Now, as $\left\{F_{x}\right\}_{x \in \mathbb{R} \geq 0}$ is Cauchy (not a Cauchy sequence though), $\lim _{x \rightarrow \infty} F_{x}$ exists (why?). Thus $\int_{0}^{+\infty} f \mathrm{~d} t$ exists and is exactly L.

The Lebesgue integration $\int_{[0,+\infty)} f \mathrm{~d} \mu$, however, does not exist at all because both $\int_{[0,+\infty)} f^{+} \mathrm{d} \mu$ and $\int_{[0,+\infty)} f^{-} \mathrm{d} \mu$ are $+\infty$ (noting that $\left.\sum_{n=0}^{\infty} a_{n}=\sum_{n=0}^{\infty} b_{n}=+\infty\right)$.

