
The relationship between singular integrals and Lebesgue integrals

Question: Let µ be the Lebesgue measure on R and let f be a continuous functions on R. When

restricted to [a, b], it is known that
∫ b

a
f(x) dx =

∫
[a,b]

f dµ, where the left hand side is the Riemann

integral and the right hand side is the Lebesgue integral. Assume that
∫ +∞
0

f dt exists, can we claim

that
∫ +∞
0

fdt =
∫
[0,+∞)

f dµ?

Answer: If we assume certain other things such as f is non-negative, or
∫ +∞
0

|f | dt < ∞, etc, yes.

In general, no.

First, note that the Riemann integral
∫ +∞
0

f dt cannot be defined directly in the sense that the

Darboux upper sum equals the Darboux lower sum (why?). Instead, this Riemann integral is defined as

∫ +∞

0

f dt = lim
x→+∞

∫ x

0

f dt.

On each [0, x], by the result of Problem 2 in Homework 4, we have

∫ x

0

f dt =
∫
[0,x]

f dµ.

Thus

∫ +∞

0

f dt = lim
x→+∞

∫ x

0

f dt

= lim
x→+∞

∫
[0,x]

f dµ

= lim
x→+∞

∫
[0,+∞)

χ[0,x] · f dµ

Also, note that ∫
[0,+∞)

f dµ =

∫
[0,+∞)

lim
x→+∞

[χ[0,x) · f ] dµ.

The original question is just equivalent to whether limx→+∞
∫
[0,+∞)

χ[0,x]·f dµ equals
∫
[0,+∞)

limx→+∞[χ[0,x)·

f ] dµ.

When f is positive, it is clear that χ[0,x1]·f ≥ χ[0,x2]·f if x1 ≥ x2. By Lebesgue Monotone Convergence

Theorem (not a direct use of it, because we have x → +∞ along the interval (0,+∞) instead of along
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a sequence. But we can still manage to let it work. Why?), it follows that

lim
x→+∞

∫
[0,+∞)

χ[0,x] · f dµ =

∫
[0,+∞)

lim
x→+∞

[χ[0,x) · f ] dµ.

So far, we have shown that the answer to the original problem might be yes under some extra

conditions. Now, we will show that, without assuming anything more than the continuity of f and the

existence of
∫ +∞
0

f dt, the answer to the original problem might be no.

Example 1: Choose a continuous function f such that

f(0) = f(1) = f(2) = f(3) = · · · = 0,

∫ 1

0

f(t) dt =
∫ 3

2

f(t) dt =
∫ 5

4

f(t) dt = · · · = 2,

∫ 2

1

f(t) dt =
∫ 4

3

f(t) dt =
∫ 6

5

f(t) dt = · · · = −1,

f is positive on [0, 1] ⊔ [2, 3] ⊔ [4, 5] ⊔ · · · and is negative on [1, 2] ⊔ [3, 4] ⊔ [5, 6] ⊔ · · · .

For this f , one can check that
∫ +∞
0

f dt = +∞. As
∫
[0,+∞)

f+ dµ =
∫
[0,+∞)

f− dµ = +∞, according

to the definition, the Lebesgue integration
∫
[0,+∞)

f dµ does not exist at all.

The next example is one such that
∫ +∞
0

f dt exists and is finite, but
∫
[0,+∞)

f dµ does not exist.

Example 2: According to the known facts of series, we can find positive sequences {an} and {bn},

such that

lim
n→∞

an = lim
n→∞

bn = 0,

∞∑
n=0

an =
∞∑
n=0

bn = +∞,

and the series

a0 − b1 + a1 − b1 + a2 − b2 + a3 − b3 · · ·

converge to certain L ∈ (−∞,+∞).
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Similar to Example 1, we choose a continuous function f such that

f(0) = f(1) = f(2) = f(3) = · · · = 0,

∫ 2n+1

2n

f(t) dt = an ∀n ∈ N≥0,

∫ 2n+2

2n+1

f(t) dt = −bn ∀n ∈ N≥0.

f is positive on [0, 1] ⊔ [2, 3] ⊔ [4, 5] ⊔ · · · and is negative on [1, 2] ⊔ [3, 4] ⊔ [5, 6] ⊔ · · · .

Consider

Fx =

∫ x

0

f dt.

One can prove that {Fx}x∈R≥0
is Cauchy in the sense that for any ϵ > 0, there exists M ∈ R≥0, such that

for any x, y ∈ (M,+∞), we have |Fx − Fy| < ϵ. Note that we are not talking about a Cauchy sequence

here. The proof will need such requirement that limn→∞ an = limn→∞ bn = 0. During the proof, one

should also note that the partial sum corresponding to the series a0 − b1 + a1 − b1 + a2 − b2 + a3 − b3 · · ·

is a Cauchy sequence. That proof is left as an exercise.

Now, as {Fx}x∈R≥0
is Cauchy (not a Cauchy sequence though), limx→∞ Fx exists (why?). Thus∫ +∞

0
f dt exists and is exactly L.

The Lebesgue integration
∫
[0,+∞)

f dµ, however, does not exist at all because both
∫
[0,+∞)

f+ dµ and∫
[0,+∞)

f− dµ are +∞ (noting that
∑∞

n=0 an =
∑∞

n=0 bn = +∞).
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